An Introduction to Principal Component Analysis

with Examples in R

Thomas Phan
first.last @ acm.org
Technical Report*
September 1, 2016

1 Introduction

Principal component analysis (PCA) is a series of
mathematical steps for reducing the dimensionality of
data. In practical terms, it can be used to reduce the
number of features in a data set by a large factor (for
example, from 1000s of features to 10s of features) if
the features are correlated.

This type of “feature compression” is often used for
two purposes. First, if high-dimensional data is to be
visualized by plotting it on a 2-D surface (such as a
computer monitor or a piece of paper), then PCA can
be used to reduce the data to 2-D or 3-D; in this con-
text, PCA can be considered a complete, standalone
unsupervised machine learning algorithm. Second,
if a different machine learning training algorithm is
taking too long to run, then PCA can be used to re-
duce the number of features, which in turn reduces
the amount of training data and the time to train a
model; here, PCA is used as a pre-processing step as
part of a larger workflow. In this paper we discuss
PCA largely for the first purpose of visualizing and
exploring patterns in data.

It is important to note that PCA does not reduce
features by selecting a subset of the original features
(such as what is done with wrapper feature selection
algorithms that perform feature-by-feature forward
or backward search [6]). Instead, PCA creates new,
uncorrelated features that are a linear combination of
the original features. For a given data instance, its
features are transformed via a dot product with a nu-
meric vector to create a new feature; this vector is a
principal component that serves as the direction of an
axis upon which the data instance is projected. The
new features are thus the projections of the original
features into a new coordinate space defined by the
principal components. To perform the actual dimen-
sionality reduction, the user can follow a well-defined
methodology to select the fewest new features that

*This document serves as a readable tutorial on PCA using
only basic concepts from statistics and linear algebra.

explain a desired amount of data variance.

This paper is organized in the following manner.
In Section 2 we explain how PCA is applied to data
sets and how it creates new features from existing fea-
tures. Importantly, we explain various tips for how
to effectively use PCA with the R programming lan-
guage in order to achieve good feature compression.
In Section 3 we use PCA to explore three different
data sets: Fisher’s Iris data, Kobe Bryant’s shots,
and car class fuel economy. In Section 4 we show R
code examples that run PCA on data sets, and in
Section 5 we provide references for further reading.
We conclude the paper in Section 6.

2 Principal Component Analysis

2.1 Applying PCA

Figure 1 illustrates the effect of applying PCA. Con-
sider the four blue dots in the left of the figure;
each dot may represent an original data instance with
three features, and so they can be placed in 3-D space.
Now, suppose that the data instances are to be re-
duced in dimensionality down to 2 features (in 2-D
space) or even 1 feature (in 1-D space). PCA per-
forms this compression by projecting the dots onto
these lower-dimensional subspaces. Intuitively, one
can imagine a flat 2-D plane that is placed within
the 3-D space with the dots dropping directly onto
that plane as shown on the upper-right of the figure.
This 2-D subspace is spanned by orthogonal (perpen-
dicular) vectors, called the first principal component
(PC1) and the second principal component (PC2).
Additionally, the original data instances can be com-
pressed in dimensionality even further by projecting
the points down onto a 1-D line defined by PC1.
Each principal component is simply a vector of
floating-point numbers that defines an axis in the re-
duced feature space. For an original data set that has
D dimensions (features), PCA software will gener-
ate D principal components (typically labelled PC1,

00

0 0

Figure 1: Effect of applying PCA to a data set. Left: The original data instances have 3 features and so
are in 3-D space. Top-right: After applying PCA, the original data points can be reduced to 2 features by
projecting them onto a 2-D plane. Bottom-right: The original data can be further reduced to 1 feature on
a 1-D line.

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 -0.9 1.02 -1.34 -1.31 setosa
2 -1.14 -0.13 -1.34 -1.31 setosa
3 —=l32 023 139 124 setosa
72 0.31 -0.59 0.14 0.13 versicolor
117 U779 V.13 0T T79 virginica

0.31* 0.521 +-0.59 *-0.269 +0.14 * 0.580 +0.13 * 0.565 = 0.475

0.31 *-0.377 +-0.59 * -0.923 + 0.14 * -0.024 + 0.13 * -0.067 = 0.416

Sepal.Length

0.5210659

-0.37741762

0.7195664

0.2612863

Sepal.Width

-0.2693474

-0.92329566

-0.2443818

-0.1235096

Petal.Length

0.5804131

-0.02449161

-0.1421264

-0.8014492

Petal. Width

0.5648565

-0.06694199

-0.6342727

0.5235971

PC2’s axis

0.416

N

PC1’s axis
0.475

Figure 2: Calculating the projection of data instances onto lower-dimensional subspaces. Top-left: Original
Iris data set after scaling. Bottom-left: Four principal components (PC1, PC2, PC3, and PC4) computed
by PCA. Top-right: Dot product between a data instance (blue numbers) and the first two principal
components, PC1 (red numbers) and PC2 (green numbers). Bottom-right: Projection of the data instance
onto PC1 and PC2. The original 4-D data instance (0.31, -0.59, 0.14, 0.13) has effectively been reduced to
a 2-D data instance (0.475, 0.416).

PC2, etc.), each of which is a vector with D num-
bers, where the vectors are orthogonal to each other
in multi-dimensional space.

Consider the example in Figure 2, where some sam-
ple data instances from the Iris data set [3, 1] are
shown in the table in the top-left. (Note that the
data has been scaled and centered using R’s scale()
function.) One specific data instance comprising the
feature values (0.31, -0.59, 0.15, 0.13) is shown in the
blue outline.

The table in the bottom-left shows the principal
component vectors produced by the PCA software.
Because the Iris data set has four dimensions (named
Sepal.Length, Sepal.Width, Petal.Length, and
Petal.Width), the PCA software produced four PCs
each with four floating-point coefficient values. As we
will describe later, the principal components (PC1,
PC2, PC3, and PC4) are returned by the PCA soft-
ware in a specific order of importance (from most to
least variance of projected data). Several points are
worth noting here. First, because the computed prin-
cipal components are orthogonal, their pair-wise dot
products will come out to be 0. Second, the PCA
software generates the values in each principal com-
ponent such that the sum of their squares is 1.0. (In
linear algebra terminology, the principal components
form an orthonormal basis.) Finally, in various liter-
ature, these values may be referred to as “loadings”.

Each principal component defines an axis, and a
data instance can be projected onto the axis by com-
puting the dot product (also known as the inner prod-
uct) between the data instance and the principal com-
ponent. For example, in the upper-right of the fig-
ure, we show the dot product between the data in-
stance (in blue) and PC1 (in red). The resulting
scalar number (0.475) is the projection of the data
instance onto the axis defined by PCl. When we
compute the dot product between the data instance
and PC2 (in green), we get another scalar number
(0.416), which is the projection of the data instance
onto the axis defined by PC2. Because PC1 and PC2
are orthogonal to each other, the two projected val-
ues identify a coordinate (0.475, 0.416) in the 2-D
subspace spanned by the PC1 and PC2 vectors, as
shown in the bottom-right. The data instance has
now effectively been reduced from four dimensions to
two dimensions. If this same type of projection is
carried out for all the Iris data instances, then they
can all be plotted onto a 2-D graph, as will be shown
in Section 3.1.

Another interpretation of this process is that the
original features are transformed into new features.
Example R code in Section 4 will demonstrate apply-
ing such a transformation on an entire data set.

It is important to understand why the new prin-
cipal components must be orthogonal to each other.
Collectively, these axes define a new coordinate sys-
tem for the data instances, and because the intent
of PCA is to reduce dimensionality, this new coor-
dinate system should ideally represent the original
data with as few axes as possible. PCA thus uses or-
thogonal axes to maximally capture the variability of
the data. Consider again the bottom-right portion of
Figure 2 that shows the orthogonal axes PC1 (hori-
zontally) and PC2 (vertically). Suppose instead that
PC1 and PC2 were both parallel horizontally; these
parallel axes could represent the point’s position only
along the horizontal axis but could not capture the
position along the vertical axis. In the next three
subsections, we examine in detail the concept of data
variance as it relates to the principal components.

2.2 Computing the principal components

The goal of the PCA software is to compute the prin-
cipal component vectors as was shown in Figure 2 in
the lower-left table. Because a vector can define a
line and an axis, each principal component thus de-
fines an axis upon which the original data instances
are projected.

Computing PC1 can be understood as an optimiza-
tion problem, as illustrated in Figure 3. The leftmost
sub-figure shows a sample of three blue dots placed
in 2-D space. The first principal component PC1 can
be any one out of an infinite number of lines that
occur in this space. The PC1 optimization can then
be seen as the problem of selecting the line that min-
imizes the total projection error (also known as the
reconstruction error) that results when the original
data instances are projected onto the line.

The other three sub-figures of Figure 3 show three
candidate lines for PC1, where the rightmost sub-
figure shows the solution. The small red lines rep-
resent the projection error: the orthogonal (perpen-
dicular) distance between a data instance and its lo-
cation on the line. PCA thus selects the line that
minimizes the sum of these projection errors.

Importantly, finding such a line simultaneously
solves a second, equivalent problem: finding the line
that maximizes the projected data instances’ vari-
ance, as shown in the figures as the green segments.
Recall that the variance! of a list X of n scalar val-
ues ; is defined as 02 = L 3" (z; — X)? and is a
quantification of the spread of the numbers. When
the original data points are projected onto the line,
the variance can be computed over those projected

1This equation defines the population variance as opposed
to the sample variance.

© o Hﬁ? g %\\@

® \e/ "o

Figure 3: The selection of the first principal component as an optimization problem. The leftmost sub-
figure shows the original data instances. The other three sub-figures show three axes (shown as grey double-
ended arrows) that are candidates for the first principal component. The red lines indicate orthogonal
(perpendicular) projection error, while the green segments indicate variance (spread) of the data projected
onto the candidate axes. The rightmost sub-figure shows an axis that produces the smallest total projection
error and the largest variance, and so this axis would be chosen to be the first principal component.

$values
[1] 2.91849782 0.91403047 0.14675688 0.02071484
Sepal.Length Sepal.Width Petal.Length Petal.Width

Sepal.Length 1.0000000 -0.1175698 0.8717538 0.8179411 $vectors

Sepal.Width -0.1175698 1.0000000 -0.4284401 -0.3661259 [,1] [,2] [,3] [,4]
Petal.Length 0.8717538 -0.4284401 1.0000000 0.9628654 [1,] 0.5210659 -0.37741762 0.7195664 0.2612863
Petal.Width 0.8179411 -0.3661259 0.9628654 1.0000000 [2,] -0.2693474 -0.92329566 -0.2443818 -0.1235096

[3,] 0.5804131 -0.02449161 -0.1421264 -0.8014492
[4,] 0.5648565 -0.06694199 -0.6342727 0.5235971

PC1 PC2 PC3 PC4

Sepal.Length 0.5210659 -0.37741762 0.7195664 0.2612863

Sepal.Width -0.2693474 -0.92329566 -0.2443818 -0.1235096

Petal.Length 0.5804131 -0.02449161 -0.1421264 -0.8014492

Petal.Width 0.5648565 -0.06694199 -0.6342727 0.5235971

Variance 2918 0.9140 0.1468 0.0207

Figure 4: The calculation of the principal components as a linear algebra problem. Top-left: 4 x4 covariance
matrix from the scaled and centered Iris data set. Top-right: Resulting 4 eigenvectors (in the columns of
the vectors variable) and 4 eigenvalues (in the values variable). Bottom: Interpreting the eigenvectors
as principal components and the eigenvalues as the variance of the data after projecting onto each principal
component.

values. The PC1 line is thus computed such that this
variance is maximized and (equivalently) the projec-
tion error is minimized.

Once PC1 is computed, it determines the first axis.
PC2 (and all subsequent principal components) are
then chosen by PCA to (1) be orthogonal to the pre-
vious principal components and (2) solve the variance
maximization / projection error minimization prob-
lem discussed in the previous paragraph.

2.3 PCA solution via linear algebra

While variance maximization (or equivalently, projec-
tion error minimization) defines the geometric prob-
lem that PCA solves, the result produced by PCA
software is found from a series of computations that
involve linear algebra. These steps allow PCA to al-
gorithmically compute the principal components that
capture the most variance when data points are pro-
jected onto them. Later in Section 4, we will show
R code that demonstrates both the explicit linear
algebra steps as well as the PCA library function
prcomp () that conveniently hides these details.

Figure 4 illustrates the needed sequence of steps.
First, the values in the original data set are scaled
and centered to prevent features with large numeric
ranges from dominating other features. The implica-
tion is that data must be numeric; any categorical
feature (known in R as a factor) must be converted
to a corresponding dummy boolean integer feature.

Second, PCA computes the covariance matrix of
the scaled and centered data, where the matrix ele-
ments contain the covariance between every pair of
features. Note the following important facts about
a covariance matrix. Because the same features are
along both the rows and columns, the matrix is
square. Additionally, because the covariance between
two features X and Y is cov(X,Y) = cov(Y, X), the
matrix is symmetric. Further, because cov(X, X) =
var(X), the diagonal contains the variance of every
feature.

Third, PCA computes the eigenvectors and
eigenvalues of the covariance matrix. For a square
matrix A, there can exist multiple pairs of corre-
sponding eigenvector ¢ and scalar eigenvalue A if
AY = \J. In PCA, we wish to have real-valued (as op-
posed to complex) eigenvectors, but not all matrices
have such eigenvectors. However, a covariance matrix
does have real-valued eigenvectors because square
symmetric matrices are guaranteed to have them due
to the Spectral Theorem. Computing all the eigen-
vectors and eigenvalues can be performed through
eigendecomposition or through Singular Value De-
composition; R’s prcomp () function uses SVD.

Fourth and finally, the resulting eigenvector and
eigenvalue pairs are interpreted in a specific way
(see [2, 5, 7] for mathematical proofs):

e Each eigenvector is used as a principal compo-
nent; that is, the numeric values in each eigen-
vector are the coefficients of each principal com-
ponent, which in turn can be thought of as the
weights of the features in the original coordinate
space.

e Each eigenvalue is the variance of the original
data points projected upon the axis defined by
the corresponding eigenvector. Note that since
the R software returns the eigenvectors in the
order of decreasing eigenvalue, we conveniently
have the principal components returned in the
order of decreasing projected variance.

e The new principal components define a new coor-
dinate system in which the data instances, after
being projected onto the principal components,
have new features with zero covariance (and thus
zero correlation). We will demonstrate this out-
come in Section 4 with R code.

2.4 Choosing the number of principal com-
ponents

For a data set with D dimensions (features), PCA
returns D principal components, and it is up to the
user of the software to select some number K of those
D principal components to use. Note that it would
probably not make sense to use all D of the princi-
pal components, as that would project the original
D-dimensional data instances right back onto a D-
dimensional subspace, meaning that there would be
no dimensionality reduction at all.

For visualization on a flat 2-D surface such as a
computer screen, selecting K to be 2 or 3 would be
appropriate.

For the purpose of reducing the number of features
in order to reduce the amount of data and improve
the running time of a machine learning training algo-
rithm, the PCA software user must make a choice for
K. On the one hand, a very small K would be de-
sirable because it would reduce the amount of data,
but on the other hand, if too many dimensions are re-
moved, the data may not capture important details.
In the context of PCA, the notion of capturing de-
tails is quantified by the amount of total variance ex-
plained by the selected principal components. Recall
that when the original data points are projected onto
an axis defined by a principal component, the vari-
ance of this projected data can be computed. The
amount of total variance explained is then the sum
of the variances over all K principal components.

Pc1 PC2 PC3 PCa
Sepallength 05210659 -0.37741762 0.7195664 0.2612863
Sepal.Width ~ -0.2693474 -0.92329566 -0.2443818 -0.1235096
Petallength 0.5804131 -0.02449161 -0.1421264 -0.8014492
PetalWidth 0.5648565 -0.06694199 -0.6342727 0.5235971
Variance 2918 0.9140 0.1468 0.0207
Fraction
¢ 0.7296 0.2285 0.0367 0.0052
variance
Cumulative 0.7296 0.9581 0.9948 1.0000
variance

Figure 5: Table showing different measures of vari-
ance across the four principal components found from
the Iris data set. The fifth row shows the variance ex-
plained by each PC. The sixth row shows the fraction
of total variance for each PC. The seventh row shows
the cumulative fraction of total variance.

In the table of Figure 5 we again show the four
principal components PC1 to PC4 from the Iris data
set. Note that the fifth row contains the variance
explained by each of the principal components. For
example, it can be seen that PC1 produces a vari-
ance of 2.918, which is the variance of the data points
after being projected onto PC1. The sixth row con-
tains the fraction of the total variance, where the to-
tal is simply the sum of the variances over all the
principal components. Here, the total variance is
2.918 4+ 0.9140 + 0.1468 + 0.0207 = 3.9995, and so
the fraction of the total variance explained by PC1 is

2.918
2918 — ().7296.

The bottom row of the table finally shows the cu-
mulative fraction of total variance explained by the
principal components. In general, we would like to
choose the smallest K such that 0.85 to 0.99 (equiva-
lently, 85% to 95%) of the total variance is explained,
where these values follow from PCA best practices.
In this paper we use the value of 0.95. Because the
PCA software returns the principal components in or-
der of decreasing variance, we can simply look across
the bottom row of this table from left to right to find
the smallest number K of principal components such
that the cumulative fraction of explained variance ex-
ceeds 0.95. In this case, K = 2 principal components
(PC1 and PC2) allow us to reach over 0.95 (more
specifically, 0.9581).

Thus, when we say that PCA can reduce dimen-
sionality, we mean that PCA can compute princi-
pal components and the user can choose the smallest
number K of them that explain 0.95 of the variance.
A subjectively satisfactory result would be when K
is small relative to the original number of features D.

2.5 Tips for PCA usage

PCA can be used effectively if the following rules of
thumb are followed:

First, one can think of PCA as a method to com-
press the feature space (that is, reduce the dimen-
sionality) by “squeezing out” correlation. That is,
given an input data set with features of varying cor-
relation, PCA produces an output data set where the
features are uncorrelated. Thus, PCA can perform
this compression only if the original data set contains
positively or negatively correlated features. Note that
because correlation is simply a unitless, scaled version
of covariance?, we can equivalently say that PCA re-
duces dimensionality if the original data has positive
or negative covariance. PCA will compute a new sub-
space where the projected data instances have zero
covariance, but if the original data had little covari-
ance with which to start, then PCA cannot help very
much to reduce dimensionality.

This problem usually manifests itself in the follow-
ing manner. Suppose a data set has D =100 features
and PCA returns, as expected, 100 principal compo-
nents. If the original features had little correlation,
it will take a large number of principal components
(e.g. 80 to 90) to reach 0.95 cumulative fraction of
explained variance. If the original features did have
strongly correlated features, then PCA could con-
ceivably reach 0.95 cumulative variance with a small
number of principal components (e.g. 5 to 10).

Second, PCA works best if the original data is
scaled and centered such that all values x; of a feature
x are modified to make the feature have mean 0.0 and
standard deviation 1.0. The resulting feature values
are then defined by z; = (z; — p,)/0,. This process
is known as standardizing or z-scaling.

Third, PCA requires that data features are nu-
meric, i.e. integers or floats. A categorical feature (an
R factor) must be replaced by dummy binary integer
variables, one for each value of the feature. For exam-
ple, if a feature for vehicle has three possible values
CAR, TRUCK, and MOTORCYCLE, then the vehicle fea-
ture would be replaced by three binary features, such
as is_CAR, is_TRUCK, and is_MOTORCYCLE.

3 Applying PCA for data exploration

In this section we apply PCA to three different data
sets for the purpose of data exploration. All the data
sets are available for free by following the relevant
provided pointers.

2Suppose X and Y are two lists of numbers with standard
deviations ox and oy, respectively. The Pearson correlation

between X and Y is defined to be cor(X,Y) = cov(X,Y)

oxoy '

® gelosa @ versicolor @ virginica

PC2 (22.9% axplained var.)

5
&
=
A
&
o

0
PC1{73.0% explained var.)

Figure 6: Biplot of the Iris data set. The PC1 axis explains 0.730 of the variance, while the PC2 axis explains

0.229 of the variance.

3.1 Iris flowers

As we showed in earlier sections, we ran PCA on
Fisher’s Iris data set, which is part of a library that
ships with R. This data set has 150 data instances
and 4 features. Figure 6 is a biplot, which is a scat-
terplot that places all 150 original data instances on
a 2-D plane with the first two principal components
PC1 and PC2 serving as the x-axis and y-axis, respec-
tively. The term “biplot” with its prefix “bi” comes
from the fact that there are actually two data sets
being represented: the original data instances shown
as points in the plot and the principal components
shown as the axes [4]. While this figure shows a 2-D
biplot, one can create a 3-D biplot if there are three
axes.

Recall from Section 2.1 that an original data in-
stance is projected onto an axis defined by a prin-
cipal component by computing the dot product be-
tween the data instance’s features and the principal
component. Here, we can see that each data instance
has been projected onto the two axes and placed at

its proper position in the new coordinate system.

The label on each axis shows the fraction of to-
tal variance explained by the axis, and so it can be
seen that these first two components together explain
0.959 of the variance (where PC1 explains 0.730 and
PC2 explains 0.229). As we will discuss in the next
subsection, this result is due to the fact that the data
set has high correlation among its original features.
Additionally, because the Iris data set has flower
species labels for each data instance, the plot also
shows the species of each of the 150 data instances as
a color (e.g. blue dots indicate the virginica species).

Such a biplot always has one directed arrow for
each original feature, where the arrow indicates the
direction in which the associated feature increases.
For example, the Petal.Length arrow points to-
wards the right, so flowers with large values for
Petal.Length were placed in that direction relative
to the center of the plot. The virginica flowers have
this characteristic, and so it can be observed that the
blue dots were, as expected, placed in the direction
that the arrow points. On the other hand, the setosa

* made ® mssad

g
£
=
L
=0
<
(v]
fod
- .
2. -
. .
-
% e,
. 4 . . .
- -
.
-
-4 l " ' ' 0
25 0.0 25 5.0 7.5
PC1 {23.4% explained var.)
Figure 7: Biplot of the Kobe Bryant shot data set.
B § E s g g
3 3 b g § g°% £ w3
s Je L, 32 25 3
x5 JES§BS sl
os 8§85 . 8288, 83238¢
Sepal.Length D . - 1
loc_x .
06 loc_y [X) 0.8
shot_distance o0
04
is_3pt 08
SepalWidth 02 minutes_remaining 04
seconds_remaining
period 0z
playoffs [
Petal.Length 02 is_at_home 02
Bank Shot
04
Dunk 04
06 Hook Shot o5
Ji Sh
Petal. Width ume shot .‘
08 Layup ‘. 0.8
Tip Shot
ip Sho . .
Figure 8: Pairwise feature correlation corrplot Figure 9: Pairwise feature correlation corrplot

of the Iris data set. of the Kobe Bryant shot data set.

flowers have small petal lengths, and so their respec-
tive red dots were placed in the opposite direction.
If two arrows point in the same direction or in oppo-
site directions, then the corresponding features have
strong positive or negative correlation, respectively.

3.2 Kobe Bryant’s shots

We additionally explored a data set of shots by Kobe
Bryant, an NBA basketball player, that was made
available for a machine learning competition on the
Kaggle.com website?. This data set has 30697 data
instances and 25 features; however, to improve visu-
alization legibility, we sampled the data down to 4197
data instances, and to keep only relevant features, we
selected 15 specific features.

The biplot is shown in Figure 7, where blue points
are missed shots and red points are made shots. The
biplot shows that there are more missed shots to the
right of the scatterplot. This trend is explained by
looking at the vector arrows. The original feature
shot_distance points to the right while the feature
Layup points to the left; as one would expect in bas-
ketball, these features point in opposite directions be-
cause a layup shot is very close to the basket. This
biplot thus shows that more shots are made closer to
the basket (usually as layup shots), while more shots
are missed farther away from the basket.

Note that the two axes explain only 0.312 of the
total variance, so there are other axes that would help
to separate the data. The low fraction is due to the
original data set having little correlation between the
original features.

This fact can be more easily seen by visualizing
the correlation between every pair of features using
R’s corrplot () plotting function. Figure 8 shows the
output of corrplot applied to the Iris data set. It
can be observed that there is high (positive or neg-
ative) correlation between its four features, as in-
dicated by large circles on the off-diagonal entries
(for example, there is a large blue circle indicating
high positive correlation between Petal.Width and
Sepal.Length). The fact that the Iris data set has
high feature correlation reveals why its top two prin-
cipal components can explain a large fraction (0.959)
of the data’s variance. On the other hand, Figure 9
shows that there is little pairwise feature correlation
in the Kobe Bryant shot data set, which explains why
its top two principal components can explain only
0.312 of the data variance.

Shttps://www.kaggle.com/c/kobe-bryant-shot-
selection, retrieved April 14, 2016.

3.3 Car class fuel economy

We also explored a data set from the United States
Department of Energy pertaining to the fuel econ-
omy of automobiles*. The data originally contained
37146 car instances with 83 features. However, to
improve visualization, we sampled the data to those
cars produced after the year 2000 and then sampled
down again to 500 car instances. Furthermore, from
inspecting the data, we saw that many of the feature
variables were largely zeros and thus did not con-
tribute useful information, so we selected 8 features
that were mostly non-sparse.

Figure 10 shows the biplot of the data. The two
axes explain 0.948 of the variance because the data
had correlated features. In this data set, there are
five classes of cars ranging in increasing physical size
across: compact cars; midsize cars; large cars; sport
utility vehicles (SUVs) with 2-wheel drive; and SUVs
with 4-wheel drive. It can be seen that the compact
cars (red dots) and midsize cars (gold) are located
on the right of the plot, while the large cars (green)
and SUVs (blue and magenta) are on the left side.
These placements stem from the feature vector ar-
rows, where the features for increased fuel efficiency
(in miles per gallon) point to the right and the fea-
tures for the size of the car engine (in engine displace-
ment liters and number of engine cylinders) point in
the opposite direction to the left. The arrow orienta-
tions seem to coincide with the intuition that, in gen-
eral, larger gas-consuming car engines tend to have
decreased fuel efficiency.

4 Example R code

In Figure 11 we show sample R code to apply PCA to
the Iris data set and generate the biplot of Figure 6.
The R function prcomp() runs SVD internally. Also
note that the prcomp () call contains flags to perform
scaling and centering.

In Figure 12 we show the use of corrplot to visual-
ize the pairwise feature correlation from the Iris data
set as was shown in Figure 8. Note that corrplot
takes as input a correlation matrix, such as the one
computed by the cor function.

Figure 13 shows complete R code to apply PCA
and transform the Iris data set. On line 2, we call
prcomp() to run PCA, and on line 4 we print the
resulting principal components. On line 26 we use
the predict () function to generate a new data set
by projecting the original data instances onto those

4http://www.fueleconomy.gov/feg/download.shtml,
retrieved May 27, 2016

PC2 (B.3% explained var,)

°

© 00~ U W -

0~ Uk WN

® 1 CompaciCars ® 2 MidsizeCars ® 3 LargeCars ® 4_SUV ZWD ® 5 SUV aWD

.
)
. Co2TailpibatEsigos
. . R fuelCost08
et R e T Lo,
. e W, L
W *, . O . - *
. o - - [
0
S
o
A 3" .

0
PC1 (BE.3% explained var.)

Figure 10: Biplot of the car fuel economy data set.

Install ggbiplot by following instructions:
https://github.com/vqu/ggbiplot
library (ggbiplot)

Run PCA.
iris.pca <— prcomp(iris[,1:4], center=T, scale=T)

Print useful information.
print (iris.pca)
print (summary(iris.pca))

Plot the figure here.
g <— ggbiplot(iris.pca,

obs.scale = 1,
var.scale = 1,
groups = iris$Species,

ellipse = TRUE,
circle = TRUE) +
scale_color_discrete (name = ’’) +
theme(legend.direction = ’horizontal’, legend.position = ’top’)

print (g)
Figure 11: R code to generate Figure 6.

library (corrplot)
df <— subset(iris, select=—c(Species))

Create the correlation matriz.
correlationMatrix <— cor(df)

Set formatting so corrplot does mnot truncate the bottom.
par (xpd=TRUE)

mymargin <— ¢(2,0,1,0)

Run corrplot

print (corrplot (correlationMatrix , method="circle” , mar=mymargin))

Figure 12: R code to generate Figure 8.

10

O~ Utk WN -

FhFh TR R IR TR

Run PCA here with prcomp().
iris.pca <— prcomp(iris[,1:4], center=T, scale=T)

print (iris.pca)
Standard deviations:
[1] 1.7083611 0.9560494 0.3830886 0.1439265
Rotation :

PC1 PC2 PC3 PCy
Sepal.Length 0.5210659 —0.37741762 0.7195664 0.2612863
Sepal. Width —0.2693474 —0.92829566 —0.2443818 —0.1235096
Petal.Length 0.5804131 —0.02449161 —0.1421264 —0.8014492
Petal. Width 0.5648565 —0.06694199 —0.6342727 0.5285971

print (summary(iris.pca))

Importance of components:

PC1 PC2 PC3 PCy
Standard deviation 1.7084 0.9560 0.38309 0.14393
Proportion of Varitance 0.7296 0.2285 0.03669 0.00518
Cumulative Proportion 0.7296 0.9581 0.99482 1.00000

#
Now, compute the new dataset aligned to the PCs by

wusing the predict() function.
#

df.new <— predict (iris.pca, iris[,1:4])
head (df.new)

PC1 PC2 PC3 PCy
[1,] —2.257141 —0.4784238 0.12727962 0.024087508
[2,] —2.074013 0.6718827 0.23382552 0.102662845
[3,] —2.356335 0.3407664 —0.04405390 0.028282305
[4,] —2.291707 0.5953999 —0.09098530 —0.065735340
[5,] —2.381863 —0.6446757 —0.01568565 —0.035802870
[6,] —2.068701 —1.4842053 —0.02687825 0.006586116

Show the PCA model’s sdev wvalues are the square root

of the projected wvariances, which are along the diagonal
of the cowvariance matriz of the projected data.
iris.pca$sdev "2

[1] 2.91849782 0.91403047 0.14675688 0.02071/84

Compute covariance matriz for new data set.
round (cov (df.new), 5)

PC1 pPC2 PC3 PCY

PC1 2.9185 0.00000 0.00000 0.00000

PC2 0.0000 0.91403 0.00000 0.00000

PC3 0.0000 0.00000 0.14676 0.00000

PC4 0.0000 0.00000 0.00000 0.02071

Figure 13: R code to run PCA on the Iris data set and see the underlying principal components. Note that
the PCA results contain the standard deviations of the projected data (as shown on lines 5-6 and 39-40)
rather than the variances. Recall that the standard deviation is the square root of the variance.

11

O~ Utk W

Scale and center the data.
df.scaled <— scale(iris[,1:4], center=T, scale=T)

Compute the cowvariance matriz.
cov.df.scaled <— cov(df.scaled)

Compute the eigenvectors and eigvenvalues.

Fach eigenvector (column) is a principal component.
FEach eigenvalue is the wvariance explained by the

associated eigenvector.

eigenInformation <— eigen(cov.df.scaled)

print (eigenInformation)
$values
[1] 2.91849782 0.91403047 0.14/675688 0.0207148/

[;1] [,2] [,3] [:4]
] 0.5210659 —0.87741762 0.7195664 0.2612863
,] —0.2693474 —0.92329566 —0.2443818 —0.1235096
] 0.5804131 —0.02449161 —0.1421264 —0.8014492
] 0.5648565 —0.06694199 —0.6342727 0.5235971

Now, compute the new dataset aligned to the PCs by
multiplying the eigenvector and data matrices.

#

Create transposes in preparation for matriz mult.
eigenvectors.t <— t(eigenInformation$vectors) # 4z4
df.scaled.t <— t(df.scaled) # 4z150

Perform matriz multiplication.
df.new <— eigenvectors.t %% df.scaled.t # Jx150

Create new data frame. First take transpose and
then add column mnames.

df.new.t <— t(df.new) # 150z

colnames (df.new.t) <— c(”PC1”, ”PC2”, "PC3”, "PC4”)

head (df.new.t)

PC1 PC2 PC3 PCy
[1,] —2.2571/1 —0.4784238 0.12727962 0.024087508
[2,] —2.074013 0.6718827 0.23382552 0.102662845
[3,] —2.856385 0.3407664 —0.04405390 0.028282305
[4,] —2.291707 0.5953999 —0.09098530 —0.065735340
[5,] —2.881863 —0.6446757 —0.01568565 —0.085802870
[6,] —2.068701 —1.4842053 —0.02687825 0.006586116

Show that the eigenvalues are the numbers on the
diagonal of the diagonalized covariance malriz.

print (eigenInformation$values)
[1] 2.91849782 0.91403047 0.14675688 0.02071484

Compute covariance matriz for new data set.
round (cov(df.new.t), 5)

PC1 PC2 PC3 PCy

PC1 2.9185 0.00000 0.00000 0.00000

PC2 0.0000 0.91403 0.00000 0.00000

PC3 0.0000 0.00000 0.14676 0.00000

PC4 0.0000 0.00000 0.00000 0.02071

Figure 14: R code to run the same PCA operation on the Iris data set from Figure 13, but instead of using
prcomp (), the code explicitly computes the eigenvectors and eigenvalues using the eigen() function.

12

principal components. When a new covariance ma-
trix is computed for the new data set on line 43, it
can be seen that the features have zero correlation,
as explained earlier in Section 2.3. Furthermore, the
variances of the features in the projected space, as
shown on the diagonal of the new covariance matrix,
are indeed the variances computed by PCA on the
original data set.

For completeness, Figure 14 shows another execu-
tion of PCA but this time without using prcomp ().
Instead, on line 11 we apply the eigen() function to
explicitly calculate the eigenvectors and eigenvalues
in order to achieve the same results. Importantly,
the original data set must be scaled and centered
manually with the call to scale(). Additionally,
on lines 28-37 we show that in order to produce the
projected data, many steps must be taken (such as
taking transposes and performing matrix multiplica-
tion), all of which are conveniently hidden in the call
to predict () in the previous example.

5 Further reading

The work by Smith provides a readable introduction
to the linear algebra derivation of PCA [9]. A tutorial
by Martins shows how to produce biplots [8]. The
STDHA website offers a wealth of tutorials for using
PCA with R [10].

The textbooks by Bishop [2, Chapter 12] and
James et al. [5, Chapter 10] have chapters with read-
able mathematical explanations of PCA. The text-
book by Jolliffe provides a rigorous mathematical
treatment [7].

6 Conclusion

Principal component analysis is an algorithm to re-
duce the number of dimensions of a data set by lin-
early combining original features into fewer features.
The result is that the original data is projected onto a
lower-dimensional coordinate system whose axes de-
fine new uncorrelated features.

PCA is generally used for two purposes: (1) as a
standalone unsupervised machine learning algorithm,
it allows high-dimensional data to be reduced to a
few dimensions so that the data can be more easily
visualized and explored; and (2) as a preprocessing
step, it reduces the number of features, which in turn
reduces the amount of data needed by other machine
learning algorithms.

At the core of PCA are the principal components.
These numeric vectors have a direction chosen such
that projection error is minimized and (equivalently)

13

the variance of the projected data is maximized. The
resulting optimal principal components are computed
by following a series of linear algebra steps that in-
volve (1) scaling and centering the original data in-
stances, (2) computing a covariance matrix from the
data, (3) computing the eigenvectors and eigenvalues,
(4) taking the eigenvectors as principal components,
and (5) taking the eigenvalues as the variance of the
data when projected onto the axes defined by the
principal components.

Choosing the number of principal components re-
quires thought. For visualizing data on paper or a
computer monitor, keeping two or three is reasonable.
For reducing the amount of training data used by a
later machine learning algorithm, it is appropriate to
choose enough principal components that can explain
a large fraction of the variance of the projected data.

7 Exercises for Self-Study

. Suppose you run PCA on a data set with 500 nu-
meric features. How many principal components
will PCA produce?

Consider an algorithm called CarelessPCA which
comprises the same linear algebra steps from
PCA as described in Section 2.3 except that the
data is not initially scaled and centered. Assume
that you can run CarelessPCA and PCA on the
same data and that the data is non-trivial (e.g.
the data values are not all zeros). State whether
each of the following statements is true or false
in general. Explain your answers.

(a) The number of resulting principal compo-
nents is the same for both PCA and Care-
lessPCA.

The numeric values in the first principal
component are the same for both PCA and
CarelessPCA.

The principal components from Care-
lessPCA are orthogonal to one another.

The eigenvalues of the covariance matrix
are the same for both PCA and Care-
lessPCA.

Suppose you have two different data sets A and
B, both of which have 500 numeric features. You
then run PCA on both of them and observe that
in order to explain 95% of the variance, you
need 5 principal components for data set A but
400 principal components for data set B. Provide
some qualitative reasons for these results. How
would you confirm your hypothesis?

8 Answers to Exercises

Below are answers to the exercises from the previous
section.

'S9INYe9J Y [8 UoM)aq
uoIe[oL100 dFeIosr o) Surndmwod (g) 10 XLjeur
UOTIR[OLIOD dT[} dzI[ensia 0} 3oTdxxod Juisn (1)
Aq poururexo o9¢ pPnod sIsejodAY SIy) Jo A)pIrea
OUJ, "MOJ SUIBIUOD ATONI[¢ 3OS BIEP O[IYM ‘SoIn)

-e9] POJR[OLIOD AURWI SUTRIUOD A[NI[Y 99S BIR(] ¢

PLERE)
-JIp 9q 03 eyep pajoaloid a1} Jo souRLIRA Y}
osned [[Im ejep [eursLio oY) Juiresg -osieq (p)

‘POULIO} 9I€ 43S B)ep oY} JO SonyeA
9} MOy Jo sso[pIeSal [euo30YII0 dIe XII}
-RUI 9OURLIRAOD © JO SI000AUDSI0 oY T, o], (9)

-asteq (q)

oy, (8) g

‘Sodmnjeaf oLmUINU [PH[%LIO 97} JO yoeo .I10]

auo ‘syuouoduos Tedourid)og sonpoad [im YOJ T

Acknowledgements

We would like to thank Leonardo Jimenez Rodriguez
and Justin Martineau for their feedback on earlier
drafts of this document.

References

[1] E. Anderson. “The irises of the Gaspe Penin-
sula,” Bulletin of the American Iris Society, 59,
pp- 2-5, 1935.

[2] C. Bishop. Pattern Recognition and Machine
Learning, Springer, 2007.

[3] R. Fisher. “The use of multiple measurements
in taxonomic problems,” Annual Eugenics, 7(2),
pp. 179-188, 1936.

[4] M. Greenacre. Biplots in Practice.
http://www.multivariatestatistics.org/
chapterl.html

[5] G. James, D. Witten, T. Hastie, and R. Tib-
shirani. An Introduction to Statistical Learning,
Springer, 2013.

[6] G. John, R. Kohavi, and K. Pfleger. “Irrelevant
Features and the Subset Selection Problem,” In
Proceedings of the Eleventh International Con-
ference on Machine Learning, 1994.

14

[7]

[8]

1. Jolliffe. Principal Component Analysis,
Springer, 2002.

T. Martins. “Computing and Visualizing PCA in
R,” http://www.r-bloggers.com/computing-
and-visualizing-pca-in-r/

L. Smith. “A Tutorial on Principal Compo-
nents Analysis,” http://www.cs.otago.ac.
nz/cosc453/student_tutorials/principal_
components.pdf

Statistical Tools for High-Throughput Data
Analysis website. “Principal component anal-
ysis: the basics you should read,” http:
//www.sthda.com/english/wiki/principal-
component-analysis-the-basics-you-

should-read-r-software-and-data-mining

