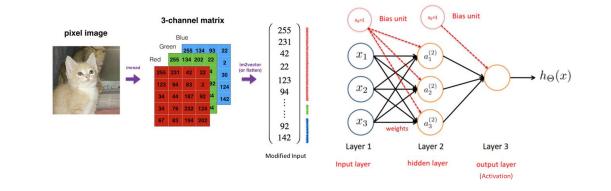


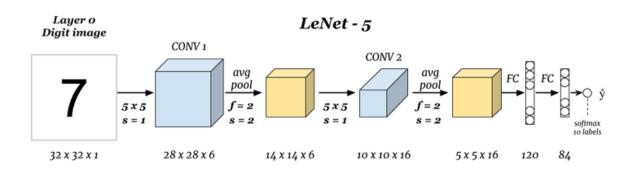
Lecture 20 Parameter Learning in NN Syed Hasib Akhter Faruqui

Disclosure: The slides are adopted from Stanford CS231n and Andrew Ng's online Machine Learning Course.

Quick recap on what we learned so far

- Fully Neural Network
- Convolutional Neural Network
- An NN architecture
 - How many layers?
 - How many neurons? and
 - How the neurons are connected?
- The parameters values (weights!)
- Components
 - Filters:
 - Convolutional Filter
 - Pooling Filters
 - Activation Functions
 - Sigmoid
 - ReLu etc.

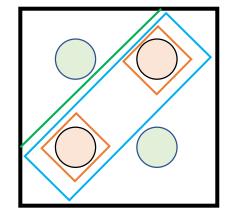


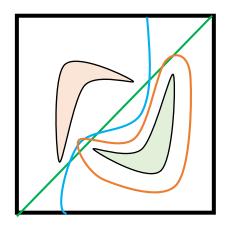


LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. *Proceedings of the IEEE*, *86*(11), 2278-2324.

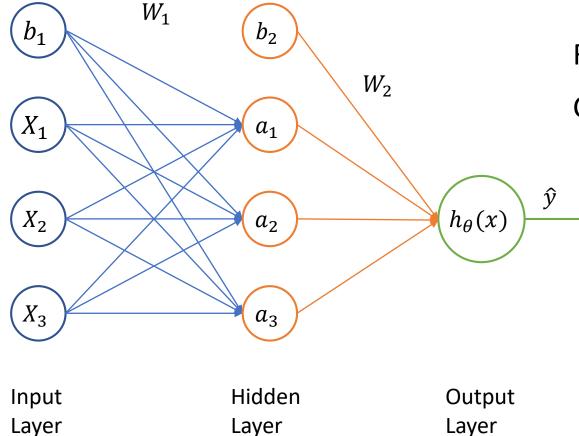
Quick recap on what we learned so far

- How many layers should we use?
 - Theoretically:
 - A NN with one Hidden layer is a universal function approximator (Cybenko, 1989)
 - Empirically:
 - Before year 2006 : There should be at least 2 6 hidden layers.
 - After year 2006 : There should be at least 5+ hidden layers.
- How the decision boundary works?
 - 0 Hidden Layer
 - 1 Hidden Layer
 - 2 Hidden Layer





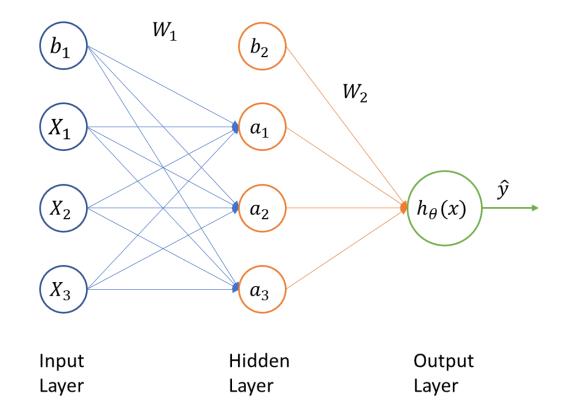
Quick recap on what we learned so far



Regression Problem, $\hat{y_r} = W_2^T a_i + b_2$ Classification Problem, $\hat{y_c} = \sigma(W_2^T a_i + b_2)$ $\sigma(x) = \frac{1}{1+e^{-x}}$

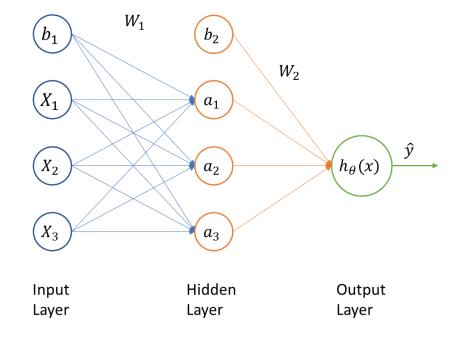
Learning from Network

- The two Components:
 - Architecture
 - Parameters (W_1, W_2)
- Learning Steps:
 - 1. Initialize the *weights, W_n*
 - 2. Calculate the *forward propagation*
 - 3. Calculate the loss function
 - 4. Perform *backpropagation*
 - 5. Update the parameters
 - 6. Repeat until convergence!



Step 1: Weight Initialization

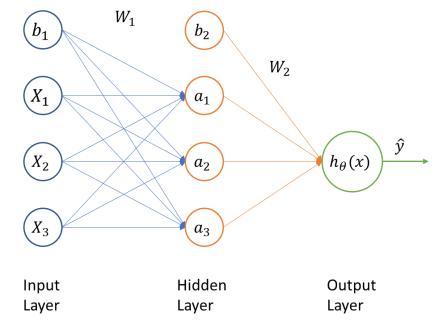
- Q1. How to initialize the *weights, W_n*?
 - Randomly initialize the parameters to small values (e.g., normally distributed round zero; $\mathcal{N}(0, 0.1)$).
- Q2. What will happen if we initialize the weights as **zero**?
 - The first layer will always be the same since, $W^{[1]}x^i + b^{[1]} = 0^{3 \times 1}x^i + 0^{3 \times 1}$ where, $0^{n \times m}$ denotes a matrix of size $n \times m$ filled with zeros.
 - Again, the output of the network has a sigmoid function, thus no matter what input we provide we will get an output probability of 0.5 i.e. $\sigma(0) = 0.5$.



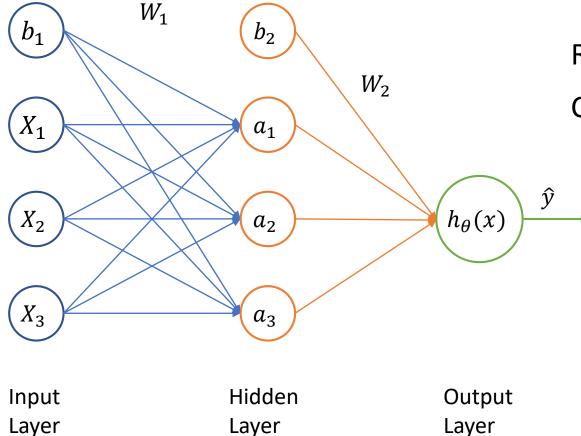
Step 1: Weight Initialization

- Q3. What if we initialized all parameters to be the same non-zero value?
 - Each element of the activation vector will be the same (because W^[1] contains all the same values). This behavior will occur at all layers of the neural network. As a result, when we compute the gradient, all neurons in a layer will be equally responsible for anything contributed to the final loss
 - **Summary**: All neurons will learn the same thing.
- Q4. Is there a better approach than randomly initializing?
 - Yes, there is one! It's called Xavier/He initialization.

$$w^{[\ell]} \sim \mathcal{N}\left(0, \sqrt{\frac{2}{n^{[\ell]} + n^{[\ell-1]}}}\right)$$



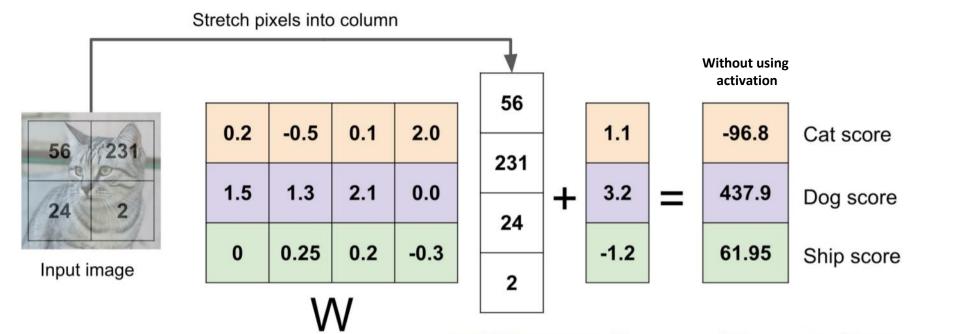
Step 2: Forward Propagation



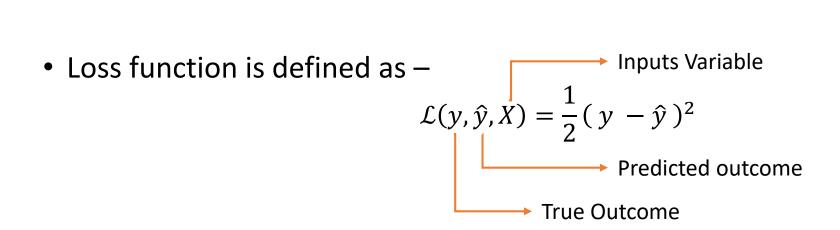
Regression Problem, $\hat{y_r} = W_2^T a_i + b_2$ Classification Problem, $\hat{y_c} = \sigma(W_2^T a_i + b_2)$ $\sigma(x) = \frac{1}{1+e^{-x}}$

Hidden Layer Calculation (with activation), $a_i = \sigma(W_1^T X + b_1)$

Step 2: Forward Propagation



Step 3: Loss Function



• In terms of log-loss, the loss function is defined as –

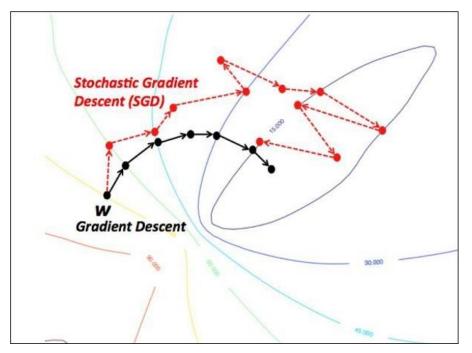
 $\mathcal{L}(y, \hat{y}, X) = -[(1-y)\log(1-\hat{y}) + y\log\hat{y}]$

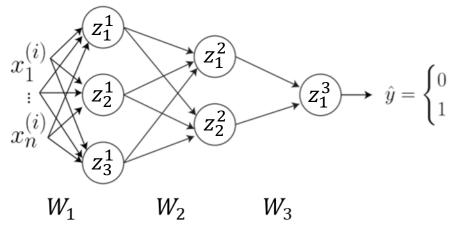
Step 4: Back Propagation

 The partial derivative of *L* can be decomposed as a sum of partial derivatives of individual losses:

$$\frac{\partial \mathcal{L}}{\partial W^l} = \sum_{k=1}^n \frac{\partial \mathcal{L}(y, \hat{y})}{\partial W^l}$$

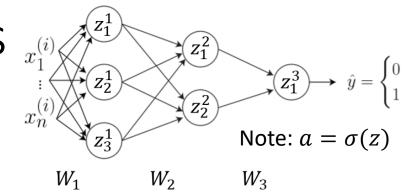
- Say, we have the network parameters, $W^1, W^2, W^3, b^1, b^2, b^3$.
- We will first calculate the gradient with respect to W³ as its due to influence of W¹ on output is complex than that of W³.





Step 4: Updating the Parameters (Back Propagation)

• Thus we have,



$$\begin{aligned} \frac{\partial \mathcal{L}}{\partial W^3} &= -\frac{\partial}{\partial W^3} \left((1-y) \log(1-\hat{y}) + y \log \hat{y} \right) \\ &= -(1-y) \frac{\partial}{\partial W^3} \log \left(1 - \sigma (1-W^3 a^2 + b^3) \right) - y \frac{\partial}{\partial W^3} \log \left(\sigma (W^3 a^2 + b^3) \right) \\ &= (1-y) \sigma (W^3 a^2 + b^3) a^{2^T} - y \left(1 - \sigma (W^3 a^2 + b^3) \right) a^{2^T} \\ &= (1-y) a^3 a^{2^T} - y (1-a^3) a^{2^T} \\ &= (a^3 - y) a^{2^T} \end{aligned}$$

• To compute the gradient with respect to W^2 :

$$\frac{\partial \mathcal{L}}{\partial W^2} = \frac{\partial \mathcal{L}}{\partial a^3} \frac{\partial a^3}{\partial z^3} \frac{\partial z^3}{\partial a^2} \frac{\partial a^2}{\partial z^2} \frac{\partial z^2}{\partial W^2}$$

$$Note: \sigma' = \sigma(1 - \sigma)$$

$$a^3 - y \quad W^3 \quad \sigma'(z^2) \quad a^1$$

Step 4.1: Regularization (if applicable)

- Similar to what we covered in Lecture 13.
 (Remember for linear regression)
- Is used to reduce the overfitting of neural networks.

Hypothesis: $h_{\beta}(x) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$ Cost Function: $J(\beta) = \frac{1}{2n} \left[\sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)})^2 + \lambda \sum_{i=1}^{p} \beta_{j=1}^2 \right]$ Parameters: $\beta_0, \beta_1, ..., \beta_n$ $\min_{\beta} J(\beta)$ Gradient descent: Repeat until convergence{ $\beta_0 \coloneqq \beta_0 + \alpha \frac{1}{n} \left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)}) \right]$ $\beta_1 \coloneqq \beta_1 + \alpha \frac{1}{n} \left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)}) x_1^{(i)} - \frac{\lambda \beta_1}{\mu} \right]$... $\beta_{p} \coloneqq \beta_{p} + \alpha \frac{1}{n} \left[\sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1} x_{1}^{(i)} - \dots - \beta_{p} x_{p}^{(i)}) x_{p}^{(i)} - \lambda \beta_{p} \right]$ NOTE:

$$\beta_p \coloneqq \beta_p \left(1 - \alpha \, \frac{\lambda}{n} \right) + \alpha \, \frac{1}{n} \left[\sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_1^{(i)} - \dots - \beta_p x_p^{(i)}) \, x_p^{(i)} \right]$$

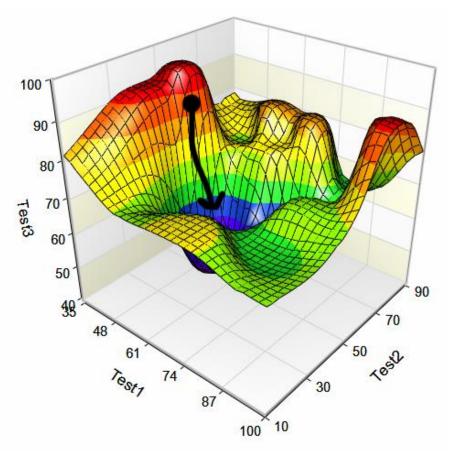
Step 5: Updating the Parameters

• Optimize/update the parameters by using gradient descent optimization. For a given number of layer, *l*:

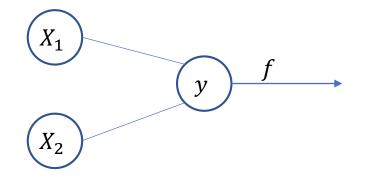
$$W^{l} = W^{l} - \alpha \frac{\partial \mathcal{L}}{\partial W^{l}}$$

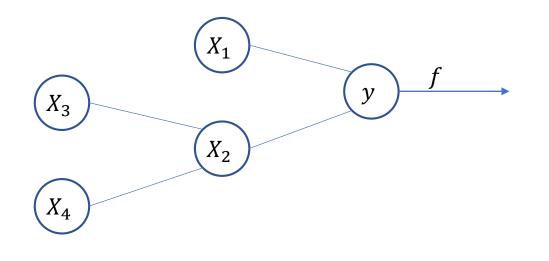
$$b^l = b^l - \alpha \frac{\partial \mathcal{L}}{\partial b^l}$$

- This computation is non-trivial at hidden layers (l < L (Output Layer)) but has complex chain of influence via activation values at subsequent layers.
- This problem is already addressed by **backpropagation**.



Example: Backpropagation

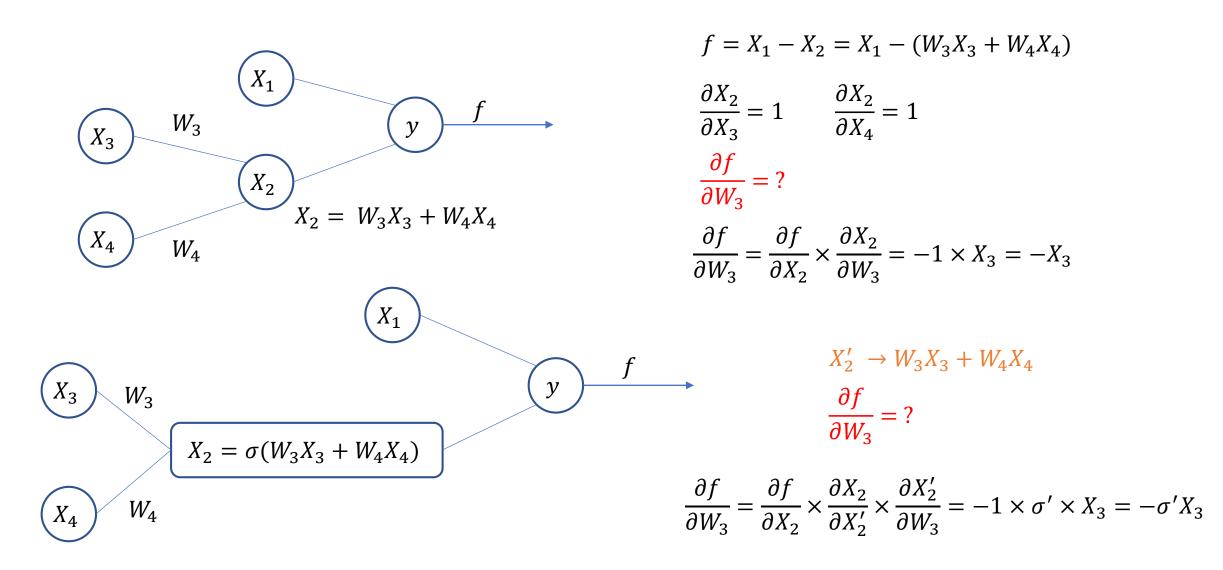




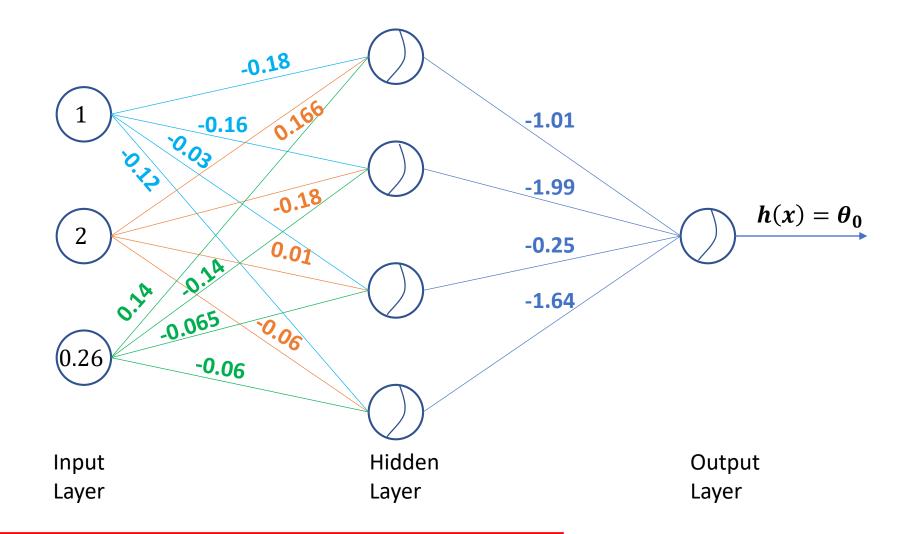
 $f = X_1 - X_2$ $\frac{\partial f}{\partial X_1} = 1 \qquad \frac{\partial f}{\partial X_2} = 1$

 $f = X_1 - X_2 = X_1 - (X_3 + X_4)$ $\frac{\partial X_2}{\partial X_3} = 1 \qquad \frac{\partial X_2}{\partial X_4} = 1$ $\frac{\partial f}{\partial X_3} = ?$ $\frac{\partial f}{\partial X_3} = \frac{\partial f}{\partial X_2} \frac{\partial X_2}{\partial X_3} = -1 \times 1 = -1$

Example: Backpropagation



Example: Learning a Neural Network

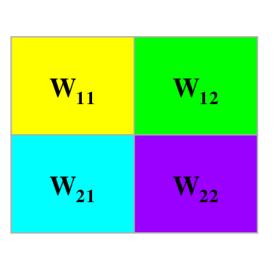


Illustrated Example: <u>https://hmkcode.com/ai/backpropagation-step-by-step/</u>

Learning the Convolution filter by backpropagation:

Remember the convolution step:

X ₁₁	X ₁₂	X ₁₃
X ₂₁	X ₂₂	X ₂₃
X ₃₁	X ₃₂	X ₃₃

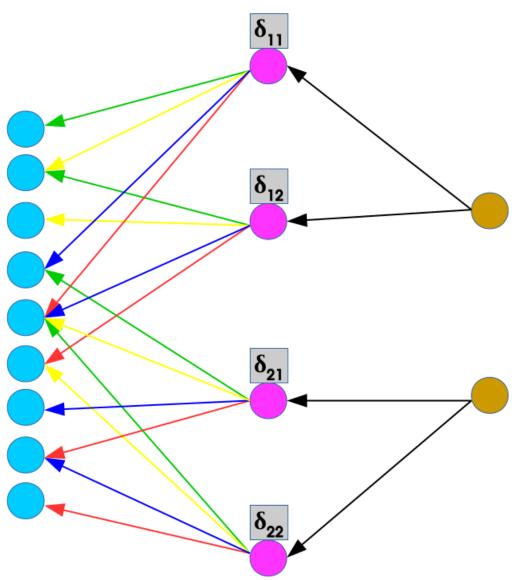


Filter

Output

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/ https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

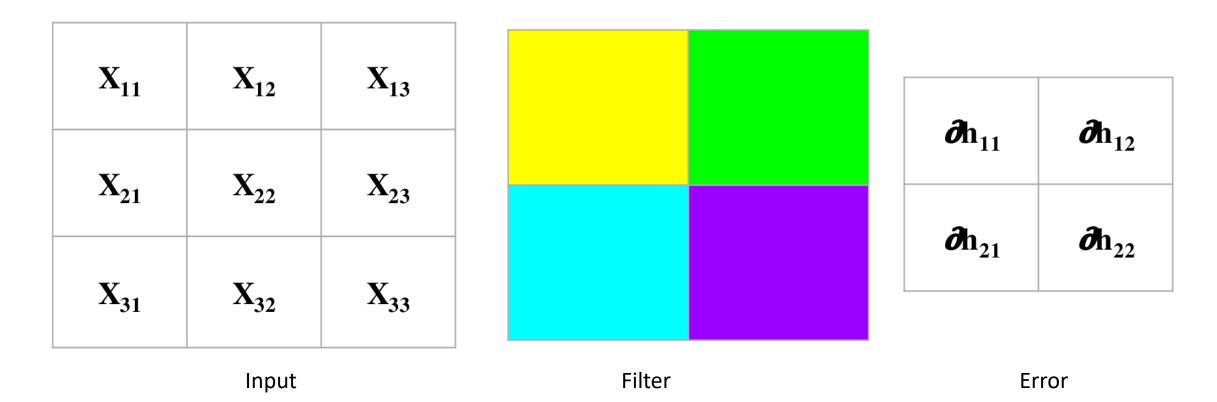
Learning the Convolution filter by backpropagation:



(For detailed derivation check blackboard)

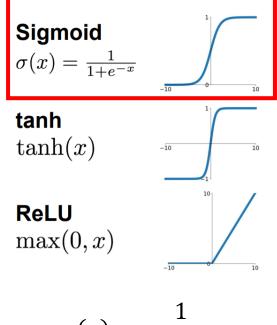
https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/ https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

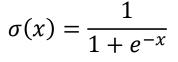
Learning the Convolution filter by backpropagation:



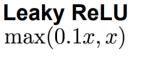
(For detailed derivation check blackboard)

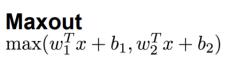
https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/ https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199



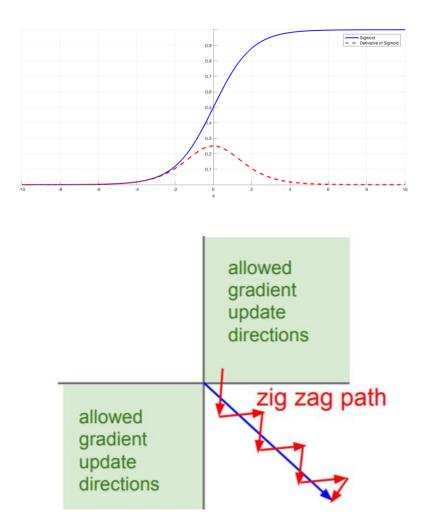


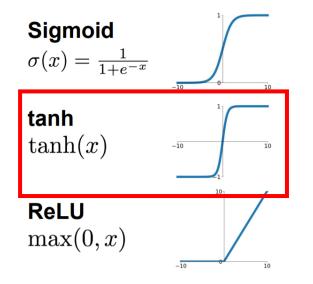
- Converted range: [0 1]





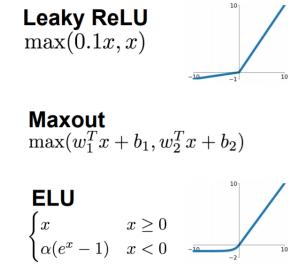
- Saturated activation causes gradients to vanish (over the chain of multiplication)
- Outputs are not zero centered
- Calculating "exponential" is computationally expensive.



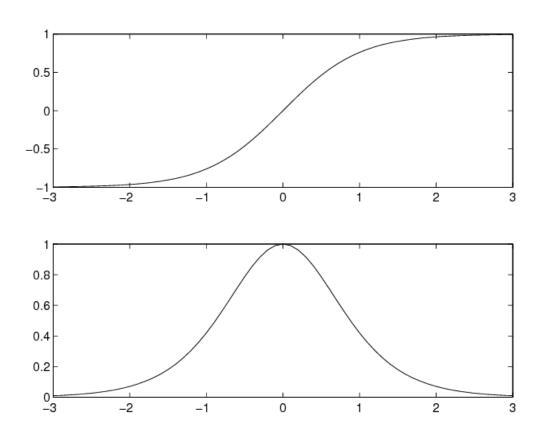


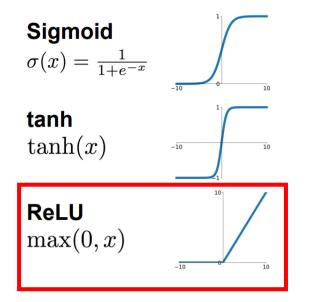
tanh(x)

- Converted range: [-1 1]
- Zero Centered

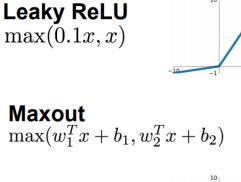


 Saturated activation causes gradients to vanish (over the chain of multiplication)



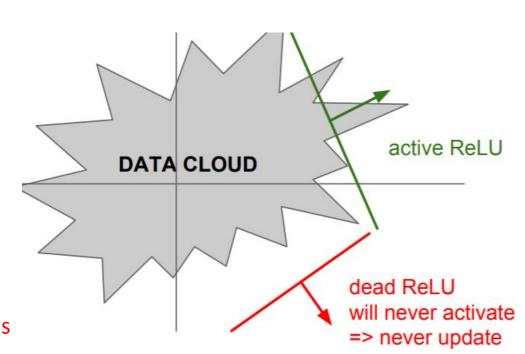


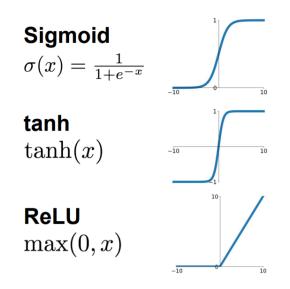
- $f(x) = \max(0, x)$
- Doesn't Saturate (+ve Region only)
- Converges faster than the previous two

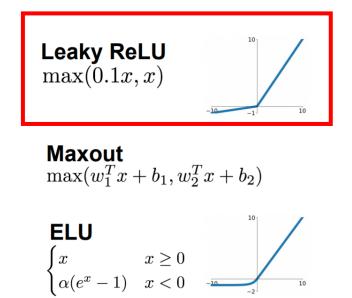


ELU $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

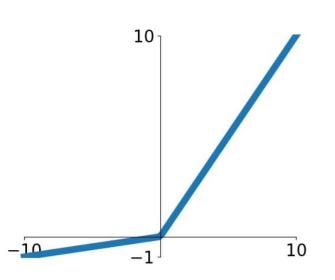
- Not zero centered
- Neurons with negative values will never activate!

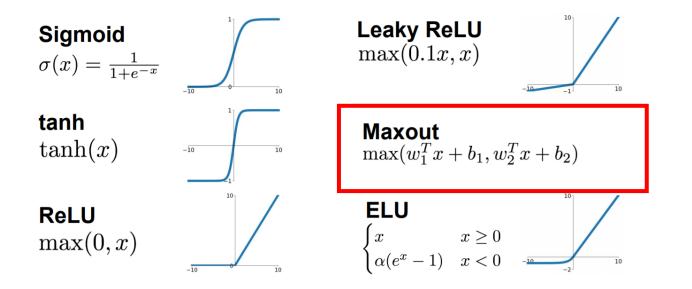






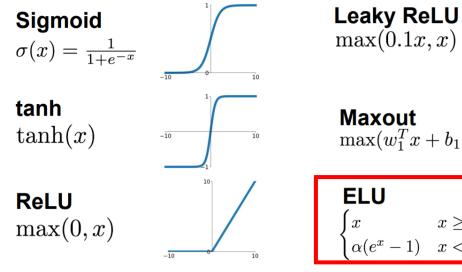
- $f(x) = \max(0.01x, x)$
- Doesn't Saturate
- Computationally efficient
- Converges faster than the previous two
- Not zero centered
 Neurons with negative values will never activate!

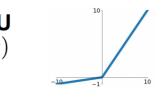




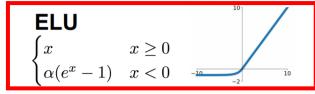
f(x)

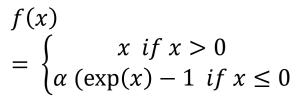
- $= \max(w_1^T x + b_1, w_2^T x + b_2)$
 - Increased number of parameters!
- Doesn't saturate the activation.
- Generalizes ReLU and Leaky -ReLU.





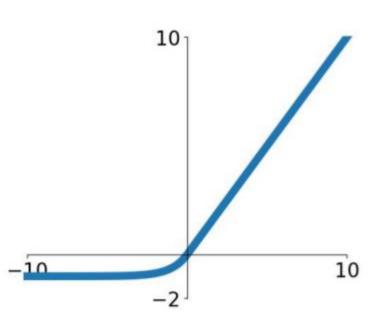
 $\max(w_1^T x + b_1, w_2^T x + b_2)$





- **Everything ReLU**
- Closer to Zero mean
- Adds some robustness to noise.

Calculating "exponential" is computationally expensive



Few more things

- Regularization
 - Normalization / Batch Normalization
 - Dropout
- Optimizers
 - SGD
 - SGD + Momentum
 - AdaGrad
 - RMSProp
 - Adam

- Hyper-parameter optimization
 - Grid Search
 - Bayesian Optimization
 - DoE
- Transfer Learning