
Lecture 20
Parameter Learning in NN

Disclosure: The slides are adopted from Stanford CS231n and Andrew Ng’s online Machine Learning Course.

insul
Typewriter
Syed Hasib Akhter Faruqui

Quick recap on what we learned so far

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied
to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

• Fully Neural Network

• Convolutional Neural Network

• An NN architecture
• How many layers?
• How many neurons? and
• How the neurons are connected?

• The parameters values (weights!)

• Components
• Filters:

• Convolutional Filter

• Pooling Filters

• Activation Functions
• Sigmoid

• ReLu etc.

Quick recap on what we learned so far

• How many layers should we use?
• Theoretically:

• A NN with one Hidden layer is a universal function approximator (Cybenko, 1989)

• Empirically:
• Before year 2006 : There should be at least 2 – 6 hidden layers.

• After year 2006 : There should be at least 5+ hidden layers.

• How the decision boundary works?
• 0 Hidden Layer

• 1 Hidden Layer

• 2 Hidden Layer

Quick recap on what we learned so far

ℎ𝜃(𝑥)
ො𝑦

Input
Layer

Hidden
Layer

Output
Layer

𝑊1

𝑋1

𝑋2

𝑋3

𝑏1

𝑎1

𝑎2

𝑎3

𝑊2

𝑏2
Regression Problem, ෝ𝑦𝑟 = 𝑊2

𝑇𝑎𝑖 + 𝑏2

Classification Problem, ෝ𝑦𝑐 = 𝜎(𝑊2
𝑇𝑎𝑖 + 𝑏2)

𝜎 𝑥 =
1

1+𝑒−𝑥

Learning from Network

• The two Components:
• Architecture

• Parameters (𝑊1, 𝑊2)

• Learning Steps:
1. Initialize the weights,𝑾𝒏

2. Calculate the forward propagation

3. Calculate the loss function

4. Perform backpropagation

5. Update the parameters

6. Repeat until convergence!

Step 1: Weight Initialization

• Q1. How to initialize the weights, 𝑾𝒏 ?
• Randomly initialize the parameters to small values (e.g.,

normally distributed round zero; 𝒩 (0, 0.1)).

• Q2. What will happen if we initialize the weights
as zero?
• The first layer will always be the same since, 𝑊[1]𝑥𝑖 +
𝑏[1] = 03×1𝑥𝑖 + 03×1 where, 0𝑛×𝑚 denotes a matrix
of size 𝑛 × 𝑚 filled with zeros.

• Again, the output of the network has a sigmoid
function, thus no matter what input we provide we will
get an output probability of 0.5 i.e. 𝜎 0 = 0.5.

Step 1: Weight Initialization

• Q3. What if we initialized all parameters to be the
same non-zero value?
• Each element of the activation vector will be the same

(because 𝑊[1] contains all the same values). This
behavior will occur at all layers of the neural network.
As a result, when we compute the gradient, all neurons
in a layer will be equally responsible for anything
contributed to the final loss

• Summary: All neurons will learn the same thing.

• Q4. Is there a better approach than randomly
initializing?
• Yes, there is one! It’s called Xavier/He initialization.

Step 2: Forward Propagation

ℎ𝜃(𝑥)
ො𝑦

Input
Layer

Hidden
Layer

Output
Layer

𝑊1

𝑋1

𝑋2

𝑋3

𝑏1

𝑎1

𝑎2

𝑎3

𝑊2

𝑏2
Regression Problem, ෝ𝑦𝑟 = 𝑊2

𝑇𝑎𝑖 + 𝑏2

Classification Problem, ෝ𝑦𝑐 = 𝜎(𝑊2
𝑇𝑎𝑖 + 𝑏2)

𝜎 𝑥 =
1

1+𝑒−𝑥

Hidden Layer Calculation (with activation),
𝑎𝑖 = 𝜎(𝑊1

𝑇𝑋 + 𝑏1)

Step 2: Forward Propagation

Without using
activation

Step 3: Loss Function

• Loss function is defined as –

ℒ 𝑦, ො𝑦, 𝑋 =
1

2
𝑦 − ො𝑦 2

• In terms of log-loss, the loss function is defined as –

ℒ 𝑦, ො𝑦, 𝑋 = −[1 − 𝑦 log 1 − ො𝑦 + 𝑦 𝑙𝑜𝑔 ො𝑦]

Inputs Variable

Predicted outcome

True Outcome

Step 4:Back Propagation

• The partial derivative of ℒ can be decomposed as a
sum of partial derivatives of individual losses:

𝜕ℒ

𝜕𝑊𝑙
= ෍

𝑘=1

𝑛
𝜕ℒ(𝑦, ො𝑦)

𝜕𝑊𝑙

• Say, we have the network parameters,
𝑊1,𝑊2,𝑊3, 𝑏1, 𝑏2, 𝑏3.

• We will first calculate the gradient with respect to
𝑊3 as its due to influence of 𝑊1 on output is
complex than that of 𝑊3.

𝑧1
1

𝑧2
1

𝑧3
1

𝑧1
2

𝑧2
2

𝑧1
3

Step 4: Updating the Parameters
(Back Propagation)
• Thus we have,

𝜕ℒ

𝜕𝑊3
= −

𝜕

𝜕𝑊3
1 − 𝑦 log(1 − ො𝑦) + 𝑦 log ො𝑦

= − 1 − 𝑦
𝜕

𝜕𝑊3 log 1 − 𝜎 1 −𝑊3𝑎2 + 𝑏3 − 𝑦
𝜕

𝜕𝑊3 log 𝜎 𝑊3𝑎2 + 𝑏3

= 1 − 𝑦 𝜎 𝑊3𝑎2 + 𝑏3 𝑎2
𝑇
− 𝑦 1 − 𝜎 𝑊3𝑎2 + 𝑏3 𝑎2

𝑇

= 1 − y a3a2
T
− y 1 − a3 a2

T

= 𝑎3 − 𝑦 𝑎2
𝑇

• To compute the gradient with respect to 𝑊2:

𝜕ℒ

𝜕𝑊2 =
𝜕ℒ

𝜕𝑎3
𝜕𝑎3

𝜕𝑧3
𝜕𝑧3

𝜕𝑎2
𝜕𝑎2

𝜕𝑧2
𝜕𝑧2

𝜕𝑊2

Note: 𝑎 = 𝜎(𝑧)

𝑎3 − 𝑦 𝑊3 𝜎′(𝑧2) 𝑎1

𝑵𝒐𝒕𝒆: 𝜎′ = 𝜎(1 − 𝜎)

Step 4.1: Regularization (if applicable)

• Similar to what we
covered in Lecture 13.
(Remember for linear
regression)

• Is used to reduce the
overfitting of neural
networks.

Step 5: Updating the Parameters

• Optimize/update the parameters by using gradient
descent optimization. For a given number of layer, 𝑙:

𝑊𝑙 = 𝑊𝑙 − 𝛼
𝜕ℒ

𝜕𝑊𝑙

𝑏𝑙 = 𝑏𝑙 − 𝛼
𝜕ℒ

𝜕𝑏𝑙

• This computation is non-trivial at hidden layers (𝑙 <
𝐿 (Output Layer)) but has complex chain of influence
via activation values at subsequent layers.

• This problem is already addressed by
backpropagation.

Example: Backpropagation

𝑋1

𝑋2

𝑦
𝑓

𝑓 = 𝑋1 − 𝑋2

𝜕𝑓

𝜕𝑋1
= 1

𝜕𝑓

𝜕𝑋2
= 1

𝑋1

𝑋2

𝑦
𝑓

𝑋3

𝑋4

𝑓 = 𝑋1 − 𝑋2 = 𝑋1 − (𝑋3 + 𝑋4)

𝜕𝑋2
𝜕𝑋3

= 1
𝜕𝑋2
𝜕𝑋4

= 1

𝜕𝑓

𝜕𝑋3
=

𝜕𝑓

𝜕𝑋2

𝜕𝑋2
𝜕𝑋3

= −1 × 1 = −1

𝜕𝑓

𝜕𝑋3
=?

Example: Backpropagation

𝑋1

𝑋2

𝑦
𝑓

𝑋3

𝑋4

𝑊3

𝑊4

𝑓 = 𝑋1 − 𝑋2 = 𝑋1 − (𝑊3𝑋3 +𝑊4𝑋4)

𝜕𝑋2
𝜕𝑋3

= 1
𝜕𝑋2
𝜕𝑋4

= 1

𝜕𝑓

𝜕𝑊3
=

𝜕𝑓

𝜕𝑋2
×
𝜕𝑋2
𝜕𝑊3

= −1 × 𝑋3 = −𝑋3

𝑋2 = 𝑊3𝑋3 +𝑊4𝑋4

𝑋1

𝑋2 = 𝜎(𝑊3𝑋3 +𝑊4𝑋4)

𝑦
𝑓

𝑋3

𝑋4

𝑊3

𝑊4

𝜕𝑓

𝜕𝑊3
=

𝜕𝑓

𝜕𝑋2
×
𝜕𝑋2
𝜕𝑋2

′ ×
𝜕𝑋2

′

𝜕𝑊3
= −1 × 𝜎′ × 𝑋3 = −𝜎′𝑋3

𝑋2
′ → 𝑊3𝑋3 +𝑊4𝑋4

𝜕𝑓

𝜕𝑊3
= ?

𝜕𝑓

𝜕𝑊3
= ?

Example: Learning a Neural Network

Illustrated Example: https://hmkcode.com/ai/backpropagation-step-by-step/

1

2

0.26

-1.01

-1.99

-0.25

-1.64

-0.16

Input
Layer

Hidden
Layer

Output
Layer

𝒉 𝒙 = 𝜽𝟎

https://hmkcode.com/ai/backpropagation-step-by-step/

Learning the Convolution filter by
backpropagation:
Remember the convolution step:

Input Filter Output

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Learning the Convolution filter by
backpropagation:

(For detailed derivation check blackboard)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Learning the Convolution filter by
backpropagation:

Input Filter Error

(For detailed derivation check blackboard)

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

https://www.jefkine.com/general/2016/09/05/backpropagation-in-convolutional-neural-networks/
https://becominghuman.ai/back-propagation-in-convolutional-neural-networks-intuition-and-code-714ef1c38199

Selection of Activation Function

𝜎 𝑥 =
1

1 + 𝑒−𝑥

- Converted range: [0 1]

• Saturated activation causes
gradients to vanish (over the
chain of multiplication)

• Outputs are not zero centered
• Calculating “exponential” is

computationally expensive.

Selection of Activation Function

tanh(𝑥)
- Converted range: [-1 1]
- Zero Centered

• Saturated activation causes
gradients to vanish (over the
chain of multiplication)

Selection of Activation Function

𝑓 𝑥 = max(0, 𝑥)
- Doesn’t Saturate (+ve

Region only)
- Converges faster than the

previous two

• Not zero centered
• Neurons with negative values

will never activate!

Selection of Activation Function

𝑓 𝑥 = max(0.01𝑥, 𝑥)
- Doesn’t Saturate
- Computationally efficient
- Converges faster than the

previous two

• Not zero centered
• Neurons with negative values

will never activate!

Selection of Activation Function

𝑓 𝑥
= max(𝑤1

𝑇𝑥 + 𝑏1, 𝑤2
𝑇𝑥 + 𝑏2)

- Doesn’t saturate the
activation.

- Generalizes ReLU and Leaky
ReLU.

• Increased number of
parameters!

Selection of Activation Function

𝑓 𝑥

= ቊ
𝑥 𝑖𝑓 𝑥 > 0

𝛼 (exp 𝑥 − 1 𝑖𝑓 𝑥 ≤ 0

- Everything ReLU
- Closer to Zero mean
- Adds some robustness to

noise.

• Calculating “exponential” is
computationally expensive

Few more things
• Regularization

• Normalization / Batch Normalization

• Dropout

• Optimizers

• SGD

• SGD + Momentum

• AdaGrad

• RMSProp

• Adam

• Hyper-parameter optimization

• Grid Search

• Bayesian Optimization

• DoE

• Transfer Learning

